• ANNUAIRE
  • [EN] Hack this site
    Basic: 11, Realistic: 17, Application: 18, Programming: 12, Extbasic: 14, Javascript: 7, Stego: 17
    Challenges
    [FR] Le site du zero
    Découvrez gratuitement la programmation (C, C++, PHP, MySQL, XHTML, CSS...), Linux, le Mapping, la modé...
    Programmation
    [EN] Defcon
    Lancé en 1992 par Dark Tangent, DEFCON est la plus ancienne et la plus grande conférence underground de...
    Hacking
    [EN] Framework Metasploit
    Le Framework Metasploit est un logiciel gratuit, open source de tests de pénétration développ&ea...
    Vulnérabilités
    [FR] Le top web
    Nous offrons une sélection la plus large possible de resources webmaster gratuites, hébergement gratuit...
    Webmaster
    [EN] Astalavista
    Un site aux ressources incontournable depuis plusieurs années, Astalavista est réellement devenue un cl...
    Hacking
    [FR] Kalkulators
    Ce projet a plusieurs buts, le premier étant l’étude de toutes formes cryptographiques, le cot&ea...
    Cryptographie

  • DONATION
  • Si vous avez trouvé ce site internet utile, nous vous invitons à nous faire un don du montant de votre choix via Paypal. Ce don servira à financer notre hébergement.

    MERCI!




Calculer pi

Kouwaa ? Des maths ?

Et bien oui, jeune prépubère. Aujourd'hui on va bouffer des maths et du code, afin de calculer nous mêmes (sisi), l'un des nombres les plus fascinants : 42 Pi.

Tout d'abord, nous allons rappeler les bases :
L'aire d'un cercle est égale au produit de son rayon au carré et de pi.
Soit A = r² x pi

C'est tout ce dont vous aurez besoin Smile.

Maintenant, entrons dans le vif du sujet, avec cette figure :
[Image: 9AAgfIf.png]
Il y a deux charabias à gauche du quart de cercle inscrit dans le carré.
  • e = sqrt(1-x²) //C'est l'équation de la courbe qui délimite l'aire verte
  • La deuxième ligne Wink. Elle veut dire littéralement "Pour tout point I appartenant au rectangle ABCD, la probabilité que I appartienne à l'aire délimitée par e est égale à pi/4. Par conséquent, pi = 4 x cette probabilité. "
    Vous vous demandez sans doute comment j'arrive à ce résultat. Et bien, j'ai tout simplement utilisé une règle élémentaire de probabilité, en faisant le quotient de l'aire délimitée par e et de l'aire d'ABCD.
    La surface délimitée par e étant un quart de cercle, son aire est égale à (pi x r²) / 4 soit pi / 4 puisque r = 1.
    L'aire du carré étant égale à 1, la probabilité qu'un point appartienne à la surface délimitée par e est égale à son aire, on trouve alors pi / 4.

Si vous avez compris, vous savez ce qu'il vous reste à faire pour calculer pi ;D.

On va trouver la probabilité qu'un point appartienne à l'aire en simulant des points aléatoires dont les coordonnées restent dans le carré ABCD. Donc, codons ça, d'abord en python pour un rapide prototypage.

Code PYTHON :

import sys
from random import random
from math import sqrt

f = lambda x: sqrt(1 - x ** 2)

if len(sys.argv) >= 2:
    n = int(sys.argv[1])
else:
    n = 1000000

points = 0

for i in range(n):
    x, y = random(), random()

    if y <= f(x):
        points += 1

print("pi =", 4 * points / n)
 


Ça marche ! On obtient bien un début de 3.1415... Mais voila, notre code python est trop lent. Recodons ça en bon vieux C des familles !

Code C :

/*
 * C'est ce programme qui va générer des positions
 * de points aléatoires afin de calculer la
 * probabilité qu'un point appartienne à la surface
 * délimitée par e, et ainsi trouver une approximation
 * de pi.
 */


#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <math.h>


/* Ceci est la formule de la courbe e */
#define f(a) sqrt(1 - pow(a, 2.))

/*
 * La méthode utilisée pour générer un nombre aléatoire
 * entre 0 et 1.
 * (en effet, il se peut qu'elle ne soit pas optimale
 * c'est pour cela j'ai créé une macro spéciale en vue
 * de conserver un code propre même s'il y a une amélioration )
 */

#define rand_inf_1() drand48()

int main(int argc, char* argv[])
{
    double x, y;
    int n, i, points = 0;

    srand48(time(NULL));

    /* Si on n'entre aucun argument à la ligne de commande,
     * on fait 1'000'000 de lancers par défaut */

    if (argc > 1)
        n = atol(argv[1]);
    else
        n = 1000000;

    for (i = 0; i < n; i++) {
        /* On donne des coordonnées aléatoires au point */
        x = rand_inf_1();
        y = rand_inf_1();

        /* Si le point appartient à la surface */
        if (y <= f(x))
            ++points;
    }

    printf("pi = %f\n", (double) 4 * points / n);

    return 0;
}
 


On peut alors obtenir une meilleure approximation, et ce en un temps plus court qu'en python.

Voila ! J'espère que vous avez compris que le calcul de pi n'est pas magique. Si vous avez la moindre question n'hésitez pas, je vous répondrai avec plaisir.

New Project News White Hat Hacker V2.3
Accueil | Challenges | Tutoriels | Téléchargements | Forum